Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Hui-Ying An, ${ }^{\text {a }}$ Zhi-Feng Lu, ${ }^{\text {a }}$ Yong-Miao Shen, ${ }^{\text {a }}$ Shan Lu ${ }^{\text {b }}$ and Jian-Hua Xu ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Nanjing Normal University, Nanjing 210097, People's Republic of China

Correspondence e-mail: xujh@nju.edu.cn

## Key indicators

Single-crystal X-ray study
$T=288 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
$R$ factor $=0.050$
$w R$ factor $=0.160$
Data-to-parameter ratio $=13.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## 3a,8c-Dichloro-8b-phenyl-3a,3b,8b,8c-tetrahydro-2-methyl-1H-[1]benzothieno[ $\left.2^{\prime}, 3^{\prime}: 3,4\right]$ cyclobuta-[1,2-c]pyrrole-1,3(2H)-dione

In the title compound, $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S}$, the cyclobutane ring is slightly folded. The crystal structure is stabilized by intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

## Comment

We have investigated the photo-induced reaction of 3,4dichloromaleimide and 3-phenylbenzothiophene and obtained the title compound, (I), as one of the products. As part of this study, we have undertaken the X-ray crystallographic analysis of (I), in order to elucidate the conformation and configuration of this cycloadduct product.

(I)

The bond lengths and angles in (I) are in good agreement with expected values, except for the C3-C4 [1.586 (5) A $]$ and the $\mathrm{C} 17-\mathrm{C} 18$ [1.576 (5) A] bond lengths, which are slightly longer than the normal $\mathrm{Csp}^{3}-\mathrm{Csp}{ }^{3}$ distance $[1.554$ (21) $\AA$ ] reported for cyclobutanes by Allen et al. (1987). These bond lengths are comparable with those observed in the related compound $4 \mathrm{a}, 4 \mathrm{c}, 9 \mathrm{~b}, 9 \mathrm{c}$-tetrahydro- $4 \mathrm{~b}, 4 \mathrm{c}, 9 \mathrm{~b}, 9 \mathrm{c}$-tetrachloro-cyclobuta[1,2-a:3,4- $a^{\prime}$ ]diindene-5,10-dione $\quad[1.5885$ (19) Å; Zhang et al., 2003].

The cyclobutane ring slightly folded, the dihedral angle between the $\mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 17$ plane and the $\mathrm{C} 3 / \mathrm{C} 17 / \mathrm{C} 18$ plane being $13.3(4)^{\circ}$. The benzothiophene moiety is essentially planar, with C17 deviating from the mean plane by 0.241 (5) $\AA$. The two Cl atoms lie on the same side of the maleimide plane. The molecular packing is stabilized by intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, as detailed in Table 2.

## Experimental

Compound (I) was prepared by the photo-induced reaction of a benzene solution of 3,4-dichloromaleimide with an excess amount of 3-phenylbenzothiophene, irradiated by light of wavelength longer than 300 nm for 27 h , and was isolated by column chromatography of the reaction mixture after evaporation of the solvent on silica gel. Single crystals of (I) were obtained by slow evaporation of a petroleum ether-ethyl acetate ( $2: 1 \mathrm{v} / \mathrm{v}$ ) solution (yield $84 \%$ ).

Received 11 November 2005 Accepted 22 November 2005 Online 26 November 2005

## organic papers

## Crystal data

$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S}$
$Z=2$
$M_{r}=390.26$
Triclinic, $P \overline{1}$
$a=8.3390$ (17) $\AA$
$b=8.6810$ (17) $\AA$
$c=13.268$ (3) $\AA$
$\alpha=71.08$ (3) ${ }^{\circ}$
$\beta=77.21$ (3) ${ }^{\circ}$
$\gamma=85.31$ (3) ${ }^{\circ}$
$V=886.0$ (4) $\AA^{3}$
$D_{x}=1.463 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=1.7-25.0^{\circ}$
$\mu=0.50 \mathrm{~mm}^{-1}$
$T=288$ (2) K
Block, colorless
$0.30 \times 0.28 \times 0.28 \mathrm{~mm}$

## Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: $\psi$ scan
(XCAD4; Harms \& Wocadlo,
1995)
$T_{\min }=0.846, T_{\max }=0.870$
3361 measured reflections
3122 independent reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.160$
$S=1.00$
3122 reflections
226 parameters
H-atom parameters constrained

2475 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-15 \rightarrow 15$
3 standard reflections every 200 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0695 P)^{2}\right. \\
& +1.998 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.43 \text { e } \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\left(\AA{ }^{\circ}\right.$ ).

| $\mathrm{C} 11-\mathrm{C} 18$ | $1.738(4)$ | $\mathrm{C} 3-\mathrm{C} 4$ | $1.586(5)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{Cl} 2-\mathrm{C} 3$ | $1.753(4)$ | $\mathrm{C} 4-\mathrm{C} 17$ | $1.562(5)$ |
| $\mathrm{C} 3-\mathrm{C} 18$ | $1.543(5)$ | $\mathrm{C} 17-\mathrm{C} 18$ | $1.576(5)$ |
|  |  |  |  |
| $\mathrm{C} 16-\mathrm{S}-\mathrm{C} 17$ | $91.91(17)$ | $\mathrm{C} 18-\mathrm{C} 3-\mathrm{C} 4$ | $90.6(3)$ |
| $\mathrm{C} 19-\mathrm{N}-\mathrm{C} 2$ | $114.7(3)$ | $\mathrm{C} 17-\mathrm{C} 4-\mathrm{C} 3$ | $88.2(3)$ |
|  |  |  |  |
| $\mathrm{Cl} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 11$ | $27.0(4)$ | $\mathrm{S}-\mathrm{C} 17-\mathrm{C} 18-\mathrm{Cl} 1$ | $1.5(4)$ |

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2$ | 0.96 | 2.50 | $2.874(7)$ | 103 |
| $\mathrm{C} 17-\mathrm{H} 17 \cdots 2^{\mathrm{i}}$ | 0.98 | 2.48 | $3.410(6)$ | 159 |

Symmetry code: (i) $-x,-y+1,-z+1$.

H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances of $0.93,0.96$ and $0.98 \AA$ for aromatic, methyl and


Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids and the atom-numbering scheme.
methine H atoms, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (aromatic and methine C) or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

This work was supported by the National Natural Science Foundation of China (NSFC, No. 20272024). Partial support by the Modern Analytical Center at Nanjing University is also gratefully acknowledged.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius. (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zhang, S.-S., Zhang, M., Xu, J.-H., Li, X.-M. \& Fun, H.-K., (2003). Acta Cryst. E59, o1930-o1931.

